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Layer-by-layer epitaxy in limited mobility nonequilibrium models of surface growth
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We study, using noise-reduction techniques, layer-by-layer epitaxial growth in limited mobility solid-on-
solid nonequilibrium surface growth models, which have been introduced in the context of kinetic surface
roughening in ideal molecular beam epitaxy. Multiple hit noise reduction and long surface diffusion length lead
to qualitatively similar layer-by-layer epitaxy in (111)- and (211)-dimensional limited mobility growth
simulations. We discuss the dynamic scaling characteristics connecting the transient layer-by-layer growth
regime with the asymptotic kinetically rough growth regime.
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I. INTRODUCTION

Thin film growth, under solid-on-solid epitaxial cond
tions, from the vacuum vapor deposition of an atomic o
molecular beam~the so-called molecular beam epitaxy
MBE! is an important technological process used extensiv
to produce high quality thin films with smooth and flat su
faces and interfaces. It is also a growth process of consi
able fundamental significance@1–6# in the statistical me-
chanics of nonequilibrium phenomena because MBE@at least
in its ideal form @7#, with no evaporation and vacancy o
overhang formation at the growth front# in principle repre-
sents@7,8# a universality class of nonlinear surface grow
outside the generic Kardar-Parisi-Zhang~KPZ! universality
@9#. A great deal of attention has, therefore, focused over
last ten years on the statistical properties of kinetically rou
~and, in principle, generically scale invariant! surface growth
in low temperature~room temperature or below! MBE, fol-
lowing the suggestions@7,8,10–12# of the possible impor-
tance of ideal MBE in defining growth universality classes
kinetic surface roughening@1–6#. We note that the conserve
surface current nature@7,8# of ideal MBE growth~i.e., solid-
on-solid growth with no evaporation and vacancy or ov
hang formation! rules out a KPZ description of its growt
dynamics.

It is interesting, perhaps even ironic, that MBE grow
has played such a central role@1–6# in kinetic surface rough-
ening phenomena because the primary materials science
petus for MBE growth is obviously to avoid kinetic rough
ening, as completely as possible in order to produce smo
and flat thin films of high surface quality with minima
amount of surface roughness. From the materials scie
perspective of producing high quality smooth~i.e., mani-
festly nonrough! thin films, therefore, MBE is typically car
ried out at elevated temperatures (;500–1000 K), where
fast surface diffusion enables one to produce smooth
films with very little surface roughness. Smooth MB
growth, as opposed to kinetically rough~low temperature!
growth, is characterized by layer-by-layer growth oscil
tions @13,14#, where each layer of the growing thin film~on
a singular high symmetry substrate! essentially fills up com-
pletely before the next layer deposition begins~on the other
hand, kinetically rough growth is, by definition, multilayer a
1063-651X/2002/66~4!/041601~10!/$20.00 66 0416
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many layers are partially filled at the growth front produci
increasing surface roughness withno layer-by-layer oscilla-
tions!, consequently the surface morphology and associa
properties oscillate as growth proceeds. In the ideal layer-
layer growth mode, therefore, the interface width (W, the
root mean square fluctuation in the interface height! of the
growing film oscillates~nominally between 0 and 1, as me
sured in lattice units, indicating an empty or a filled laye!
whereas in the kinetically rough growth modeW increases
monotonically as a power law in the average film thickne
(^h&). Layer-by-layer epitaxy is, however, an initial transie
growth regime that eventually crosses over to the asympt
kinetically rough growth regime as the shot noise intrinsic
the incident deposition beam fluctuations always wins ou
damp the layer-by-layer oscillations, and at long enough ti
scales~and for large enough lateral system sizes! statistically
scale invariant kinetically rough growth would alway
emerge.~In fact, the noise associated with the stochastic d
fusion process also contributes to kinetic roughening, but
shot noise associated with the incident beam fluctuation
the mostrelevant roughening mechanism.! This is also the
experimental observation: layer-by-layer growth oscillatio
as studied for example through RHEED intensity oscillatio
monitoring the dynamical surface evolution@13,14#, eventu-
ally always damp out as the stochastic deposition shot n
associated with incident particle beam fluctuations leads
kinetically rough multilayer growth after some characteris
time tc . The damping timetc , beyond which layer-by-layer
growth dies out, depends on the growth temperature~which
controls the surface diffusion rate!, and is in general large
for higher temperatures because longer diffusion length
higher temperatures enhance layer-by-layer growth.~There is
actually a complication, arising from the unaviodable vic
nality in the starting substrate that can never really be p
cisely a high symmetry singular plane in real growth whe
layer-by-layer oscillations tend to disappear at both high a
low growth temperatures—the low temperature behavio
from the multilayer kinetically rough growth as discuss
above, but the high temperature disappearance arises
the so-called step flow growth mode that is caused by
very fast surface diffusion of deposited atoms at high te
peratures leading to their moving directly to step edg
which must be present in any real substrate due to vicina
©2002 The American Physical Society01-1
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or miscut, without any layer-by-layer growth oscillations; w
neglect considerations of such a step flow growth mode
this paper assuming all growth to be occuring strictly
singular high symmetry substrates.!

The ideal MBE growth~on flat singular high symmetry
substrates! can be thought of as composed of tw
regimes—an early time (t,tc) transient ~fast diffusion
driven! regime of layer-by-layer growth followed by th
asymptotic (t.tc) kinetically rough~deposition beam fluc-
tuation driven! growth regime~with no layer-by-layer oscil-
lations! characterized by power law evolution@1–12# in sur-
face roughness. At low enough temperatures, when sur
diffusion is extremely slow,tc could be less than the time
takes to grow one monolayer of deposit on the average,
in that situation layer-by-layer transient growth regime is
visible with the kinetically rough growth regime being dom
nant essentially right from the beginning. Conversely, su
ciently high temperature growth on a small substrate co
continue in the layer-by-layer mode for a very long tim
although some damping of the growth oscillations is ine
table with time as distant spatial regions on the subst
must lose coherence due to the inherent shot noise fluc
tions associated with the discrete deposition process in
incident beam. Thus layer-by-layer growth us purely a ‘‘
nite size’’ ~both spatially and temporally! transient
phenomenon—if the substrate is made sufficiently la
and/or if one waits for sufficiently long growth time, laye
by-layer epitaxy must necessarily cross over to kinetica
rough growth. It is important to emphasize, however, that
surface diffusion length is typically an exponentially ac
vated function of growth temperature, and therefore, a sm
change in temperature could cause a sharp large chan
the growth mode~layer-by-layer to rough and vice versa d
pending on whether the growth temperature is decrease
increased! for a given substrate, leading to the empirical co
cept@15# of an epitaxial growth temperatureTc with growth
being layer-by-layer~rough! for T.Tc (T,Tc)—clearly Tc
is a loosely defined concept because it must be a weak~sub-
logarithmic! function of the effective substrate~or the ter-
race! size for a given material@15#. In general, ‘‘good’’ MBE
growth aiming toward producing high quality smooth epita
ial thin flims is carried out at the highest possible grow
temperature~within the constraint that evaporation or d
sorption from the growth front should be negligible so th
the growth temperature cannot be arbitrarily high! so as to
make atomic mobility at the growth front to be very hig
leading to large ‘‘surface diffusion length’’l. Here l is taken
to be the linear size over which the surface is smooth du
atomic diffusion. Assuming the deposition process to b
random Poisson process it is then easy to see that the ty
surface roughness over terraces of sizel would only grow as
A^h&/ l , where^h& is the thickness of the grown film~and we
measure all lengths in lattice units!. Thus for largel, one
would have to grow a very thick film of thicknessl 2 before
the surface roughness reaches even one monolayer flu
tion. One can, therefore, grow MBE thin films of very hig
smoothness and quality, without worrying at all about t
kinetic surface roughening by properly adjusting the grow
temperature@15# to makel large.
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Layer-by-layer MBE growth has been extensively stud
@16–20# in the literature using computer simulations of MB
growth through the stochastic~or kinetic! Monte Carlo simu-
lations, with the atomistic diffusion at the growth front a
sumed to be controlled by stochastic activated hopping p
cess with the hopping rate determined by a lo
coordination number dependent activated Arrhenius hopp
Such activated diffusion Arrhenius hopping simulatio
~sometimes also referred to as ‘‘full diffusion’’ simulations
differentiate them from ‘‘limited mobility’’ growth models
which are our main interest in this paper! involve continuous
~possible! hopping of all surface atoms according to the
local bonding configurations~which determine the activation
energy for the hopping process!. Such full diffusion simula-
tions are obviously not well designed to study the kine
roughening universality class of MBE growth because th
are extremely time consuming and cannot really be car
out for large systems@particularly in the physically relevan
(211) dimensions# for long times, an essential requireme
for ascertaining the asymptotic universality class of a grow
model. Although there are some notable exceptions@21–23#,
the full diffusion Arrhenius activated kinetic Monte Carl
simulations of MBE growth have not been used with partic
lar success for understanding statistical scale invaria
properties of kinetic surface roughening. Instead, import
insights into the MBE universality class of kinetic surfa
roughening have come primarily from nonequilibrium lim
ited mobility growth models—mainly the so-called Wol
Villain @11# ~WV! and the Das Sarma-Tamborenea@10# ~DT!
model—which were introduced specifically for the elucid
tion of the MBE growth universality.

In this paper, we study the DT and the WV model~we
emphasize that WV and DT models, in spite of their clo
similarity in growth rules, belong @24# to different
asymptotic universality classes in both (111) and (211)
dimensions although their preasymptotic scaling behavio
very similar which has led to considerable confusion in t
literature! in the complementary layer-by-layer growth r
gime rather than the kinetically rough growth regime th
motivated the introduction of these models. We mention
this context that some (111)-dimensional studies of WV
and DT models in the layer-by-layer growth regime ha
recently been reported in the literature@25,26#. Our results,
where applicable, agree with these earlier works@25,26#, but
our focus in this paper is (211)-dimensional growth and the
effect of long surface diffusion length in (111)-dimensional
growth, neither one of which has earlier been studied.

In limited mobility growth models ~the models and
growth rules used in this paper are described in Sec. II of
paper—see, for example, Fig. 1!, in sharp contrast to full
diffusion MBE growth simulations, the goal is to suppre
crossover and transient effects as much as possible~so as to
efficiently reach the asymptotic kinetic surface roughen
regime! and as such only the most recently deposited atom
allowed to diffuse or relax instantaneously to the appropri
incorporation site following the mobility rules of the specifi
model. This allows suppression of crossover effects inv
ably present in the full diffusion simulations arising fro
many different diffusion rates corresponding to many diffe
1-2
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ent possibilities for local bonding configurations—the on
time scale in the limited mobility growth models being th
deposition rate, which defines the time unit for the proble
From now on we take the time unit~sometimes referred to a
a ‘‘second’’! as the time to deposit one monolayer on t
average. Thus the growth time in this paper also defi
^h&—the average thickness of the deposited film measure
units of monolayers or the lattice constant, which we take
be the unit of length throughout.~With no loss of generality
we choose the lattice constant to be the same along the
strate and the growth directions.!

The limited mobility growth models@10,11# are by con-
struction strongly dominated by the deposition shot no
because the goal is to study the scale invariant kinetic sur
roughening behavior. This is particularly true in the origin
versions of the growth model where the surface diffus
length is choosen to be unity,l 51, i.e., the deposited atom
are allowed to move only to the nearest neighbor incorpo
tion sites around the deposition site. The original DT a
WV models, therefore, did not exhibit, by design, any lay
by-layer growth oscillations since the smoothing or the he
ing distance (l ) was just one lattice unit. In order to manife
layer-by-layer epitaxy in limited mobility growth models on
must, therefore, suppress the shot noise associated with
incident beam fluctuations.

In this paper, we accomplish the noise suppression by
alternative techniques: The ‘‘multiple hit’’ noise-reductio
technique@27–31# and the ‘‘long surface diffusion length
( l .1)’’ noise-reduction technique@21#. These techniques
described in Sec. II of the paper, give rise to layer-by-la
growth ~as monitored by an oscillatory surface roughne
i.e., W(t) showing oscillations as a function of growth tim
t) in the limited mobility growth models as described in Se
III of the paper.

The rest of this paper is organized as follows. In Sec
we describe the limited mobility growth models and t
noise reduction technique~s! employed by us. We also pro
vide some theoretical background for our analysis of
simulation results. In Sec. III we present and describe
numerical simulation results for layer-by-layer epitax
growth in DT and WV models. We also discuss in Sec.
various ~approximate! scaling properties of our simulate
layer-by-layer epitaxial growth results. We conclude in S
IV with a general discussion of our results making conn

FIG. 1. Schematic plots showing the diffusion rules for the D
and WV models when the diffusion lengthl and noise-reduction
factor m are both 1.
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tions with some of the existing results in the literature a
pointing out possible future directions as well.

II. MODELS, THEORY, AND BACKGROUND

The DT@10# and WV@11# models used in our simulation
are shown in Fig. 1. We carry out growth simulations in bo
(111) dimensions and (211) dimensions~on 100 high
symmetry substrates!. Particles are dropped, obeying sol
on solid constraint, sequentially~one by one! and randomly
with an average rate ofN per second, whereN5L for d
5(111) andN5L2 for d5(211), on a substrate of latera
linear size ofL lattice units. We measure length in lattic
units and time in inverse deposition rate~i.e., in units of
monolayer filling since one average monolayer of deposit
occures every ‘‘second’’!. Each deposited atom is allowed t
‘‘diffuse’’ instantaneously to its incorporation site followin
the mobility rules of the specific model. The diffusion rule
in the DT model are that a deposited atom can move onl
it has no lateral nearest neighbor in the same layer~if it does,
then the atom is incorporated at the deposition site!—if the
deposition site has no lateral nearest neighbor then the
dent atom may move instantaneously to a neighboring em
site ~within a lateral diffusion length ofl, wherel 51 in the
original model and in most existing simulations! provided
the final incorporation site has a higher lateral coordinat
number~i.e., one or higher! than the deposition site. If sev
eral neighboring sites satisfy the diffusion rule then the at
will move randomly to any one of them with equal probab
ity. The rules for the WV model are superficially similar t
the DT rules: In the WV model all deposited atoms~andnot
just the ones with no lateral bonds! can, in principle, move
provided they can increase their local lateral bonding and
deposited atom always moves to the site with the maxim
local bonding environment. In both models, the deposi
atom is incorporated at the deposition site if it cannot sati
the diffusion rules~i.e., no sites with higher coordinatio
available! within the diffusion length.

Both DT and WV models have been extensively stud
in the literature~mostly within nearest neighbor,l 51, diffu-
sion rules! in the context of their kinetic surface roughenin
universality classes. Recently, layer-by-layer epitaxy in
WV @25,26,30# and the DT@25# model have been investi
gated in ~111! dimensions using the multiple hit noise
reduction technique. The very first simulational observat
of layer-by-layer growth in a limited mobility growth mode
was reported in the DT model in Ref.@21#, where it was
studied in 111 dimensions using a long (l .1) surface dif-
fusion length, but no details were investigated. We emp
size that the usuall 51 limited mobility growth model does
not exhibit any layer-by-layer epitaxy by definition, an
manifests kinetic roughening right from the beginning sin
for l 51 the layer-by-layer epitaxy regime is restricted to le
than one monolayer coverage, i.e., in the standard lim
mobility growth models@10–12# the layer-by-layer epitaxy
regime does not exist.

To obtain a layer-by-layer growth regime in the DT an
the WV model we use two distinct techniques to suppr
noise and enhance diffusion, which enable our growth sim
lations to manifest strong layer-by-layer growth oscillatio
1-3
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before crossing over to the kinetic surface roughening
gime with pure multilayer growth. One technique, referred
as the noise-reduction technique, has also been used by
ers @25–30# to produce layer-by-layer growth in variou
models, e.g., Eden model@28#, single step model@29#, and
the WV and the DT model in (111) dimensions@25,26,30#.
We have earlier used this technique@31# to suppress correc
tions to scaling in the asymptotic kinetically rough surfa
growth regime in the DT and the WV model in order
accurately determine the dynamic scaling exponents and
associated growth universality class. In the noise-reduc
technique, characterized by an integer numberm ~the usual
growth model without any noise reduction is anm51
model!, a counter is put on each surface site and each
crete deposition event on a site advances the counte
unity. A deposition event at a particular site is accepted o
when the counter reaches a predetermined numberm.1.
Thus, this technique is the multiple hit noise-reduction te
nique sincem(.1) deposition hits on a site are needed fo
true deposition. Afterm hits on a site~i.e., after the accep
tance of a deposition event! the counter at that particular sit
is set back to zero, and the whole multiple hit process beg
all over again. The multiple hit noise reduction technique i
coarse-graining procedure which suppresses the depos
shot noise, and the noise reduction is enhanced for la
values ofm. The second technique applied by us for obta
ing layer-by-layer growth oscillations in limited mobilit
growth models is to use long surface diffusion lengthsl
.1) in the growth simulations. Obviously long diffusio
lengths enhance the layer-by-layer growth regime, and
particular, forl .L i.e., the surface diffusion length excee
ing the system size, the layer-by-layer growth may per
essentially indefinitely since each deposited atom may
ways be able to seek out a desired epitaxial site for incor
ration. In some sense the multiple hit noise-reduction par
eter m is equivalent to the dimensionless diffusion leng
parameterl /L because large values of both tend to enha
the layer-by-layer growth regime. In Sec. III, where w
present our simulation results, we will see the precise na
of this correspondence betweenm and l /L in our two meth-
ods of obtaining layer-by-layer epitaxy in the DT and t
WV model.

The central quantity of interest in layer-by-layer epitax
growth is the characteristic timetc at which layer-by-layer
growth dies out, i.e., for the deposited average film thickn
larger than̂ tc&, measured in lattice units or in monolayer
there are no discernible layer-by-layer growth oscillations
has been found in earlier numerical simulations of layer-
layer growth in a variety of contexts thattc obeys an ap-
proximate scaling relation with the coarse-graining para
eterm ~or l /L as the case may be!, and we are interested i
investigating whether the following scaling relations hold
the limited mobility growth models

tc;H mm for the noise reduction method,

~ l /L !d for the long diffusion length method.
~1!

If such scaling relations do hold in our simulations we a
interested in obtaining the relationship, if any, between
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exponentsd andm. Note thattc depends onl /L ~rather than
just l ) on dimensional grounds—in fact, the layer-by-lay
growth mode is purely a finite size transient phenomen
dynamical growth is, by definition, kinetically rough@32# in
either the infinite size (L→`) or the infinite time (t→`)
limit.

It is in fact fairly straightforward to obtain a relationshi
between the noise-reduction parameterm and the surface dif-
fusion length parameterl /L using only dimensional argu
ments. In particular, we note that for ad8-dimensional sub-
strate @d852 for real surfaces andd851 for the
(111)-dimensional growth# one obtains a simple relation
ship betweenm and d by noting that a surface diffusion
length l corresponds tom; l d8 since there arel d8 available
sites for a particular deposited particle to incorporate at. T
immediately leads to

d5md8. ~2!

Within the limited accuracy of our growth simulations~see,
Sec. III for the results!, we find the scaling relation define
by Eq.~2! to be valid. We note that later in this paper, whe
we compare our simulation results with existing theor
@33,34#, it is the dependence of the damping timetc on the
diffusion lengthl that would be compared, the relationsh
between the noise-reduction parameterm and tc ~i.e., the
exponentm) would then follow using Eqs.~1! and ~2!.

One secondary theoretical goal of our work is to inves
gate the extent to which layer-by-layer growth oscillatio
obey scaling with respect to growth time~or equivalently, the
average film thickness!. Using Eq.~1! as the theoretical an
satz one can ask whether the surface roughnessW, defined as
the ensemble averaged~over many growth simulations! root
mean square fluctuation in the interface height, which is
cillatory ~and W,1 implying little roughness! in the layer-
by-layer growth regime is a general scaling function of t
layer-by-layer growth parameterm or l /L through a depen-
dence of the form

W~ t !; f m~ t/mm! or f l„t/~ l /L !d
…. ~3!

If a scaling form such as Eq.~3! holds in the layer-by-layer
growth regime, then Eq.~1! for tc trivially follows from it—
tc being the value of time where layer-by-layer oscillatio
cease to exist. We could go further in our scaling analy
and ask whether the scaling defined by Eq.~3! continues to
hold ~perhaps approximately! well beyond (t.tc) the layer-
by-layer growth regime establishing an approximate sca
relationship between the layer-by-layer growth regimet
,tc) and the kinetically rough growth regime (t.tc). Our
results presented in Sec. III indicate that such an approxim
scaling relation does indeed exist between the layer-by-la
growth regime and the kinetically rough growth regime.

Finally, we note that there have been recent attem
@33,34# at developing a theory for layer-by-layer growth o
cillations starting from continuum growth equations under
ing the coarse-grained long wavelength behavior of M
growth. A simple dimensional argument@33#, later followed
1-4
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up @34# by a renormalization group approach, leads to
following results for MBE growth:

m5H 4/3 for d851,

2 for d852.
~4!

The exponents defined by Eq.~4! correspond to the so-calle
@1–6# conserved fourth order nonlinear growth equation
the nonlinear MBE growth equation@which is sometimes
also referred to as the conserved KPZ equation with nonc
served noise or the Lai-Das Sarma-Villain@7,8# ~LDV ! equa-
tion# which is given by

]h

]t
52n4¹4h1l22¹

2~“h!21h, ~5!

where h(x,t) is the dynamical height fluctuation variab
relative to the average interface^h& at the substrate sitex
~with x is the lateral substrate coordinate!, “[]/]x is the
gradient operator along the surface,h is the deposition sho
noise~which causes the kinetic surface roughening!, andn4 ,
l22 are coefficients which in general depend on surface
fusion rate, deposition rate, etc. Since the continuum desc
tion of the DT and the WV model are actually quite compl
@23,31,35–38#, and are likely to be different in different di
mensions@38#, it is by no means clear that the exponen
@given in Eq.~4!# corresponding to Eq.~5! apply without any
qualifications to the DT and the WV model~as will be dis-
cussed in Sec. III, where we present our numerical sim
tions!. We, therefore, also provide below the exponentm for
the linear second order Edwards-Wilkinson~EW! growth
equation@39# which applies to the limited mobility Family
~FM! growth model@40# and may also have significant re
evance to the DT and the WV model@31,38,41#:

m5H 2 for d851,

` for d852.
~6!

The EW equation, whose layer-by-layer growth exponen
(111) and (211) dimensions is given in Eq.~6!, is the
following:

]h

]t
5n2¹2h1h. ~7!

We note here that both sets of exponent values given by
~4! and ~6! will be relevant in our discussion of our simula
tion results to be presented in the following section.

III. RESULTS AND DISCUSSIONS

We now present our (111) ~i.e.,d851) and (211) ~i.e.,
d852) dimensional layer-by-layer growth simulation resu
for the discrete limited mobility DT and WV models in Fig
2–6. In Figs. 2–4 we present (111)-dimensional simulation
results whereas Figs. 5 and 6 give (211)-dimensional simu-
lational results for the two growth models. In each figure~to
be described below! the panel~a! gives the simulatedW(t)
as a function of growth timet for various values of the noise
04160
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reduction parameterm or the surface diffusion lengthl with
the layer-by-layer oscillations manifestly obvious for larg
values ofm and l. ~The original DT and WV models corre
spond to the simulation withm51 and l 51, which has no
layer-by-layer oscillations by construction.! In panel ~b! of
each figure we demonstrate our best computed scaling
lapse of theW2t plots @shown in panel~a!# for various
values ofm or l with a suitable scaling of timet to t/mm or
t/( l /L)d as the case may be. For each scaling collapse in~b!
we try various different values of the exponentm or d ro
obtain the best statistical scaling in the simulated data.
system size used in each simulation is indicated in the c
responding figures and the captions. Here we should em
size that the results shown in this paper represent on
typical fraction of our extensive DT and WV layer-by-laye
growth simulations. The representative results presented
are of course in complete agreement with the full set of
simulation data, and our conclusion is based on a very la
set of simulation results and not just on the results prese
in this paper.

In Fig. 2 we show our (111)-dimensional DT layer-by-
layer growth simulation results for finite surface diffusio
length l (m51,l .1) for l 510, 20, 30, 40, 50. The layer-by
layer oscillations are visually obvious in Fig. 2~a!—the
damping timetc increases fromtc;10 for l 510 to roughly

FIG. 2. ~a! W2t oscillations for (111)-DT (L51000) with
m51 andl 510, 20, 30, 40, 50~top to bottom!; ~b! scaling plot of
systems in~a! using d51.5. The interface width is measured
units of monolayers or lattice spacing and time is measured in u
of number of deposited monolayers~i.e., average height of the sur
face!.
1-5
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tc;50 for l 550. In general, the magnitude of the oscill
tions decays exponentially with increasing time, and
t.tc we can only discern the power law increase ofW
;tb, whereb is the growth exponent in the model. In Fi
2~b! we show our scaling collapse of theW(t) data from Fig.
2~a!, leading to the exponent valued'1.5. Thus, tc
;( l /L)1.5 in d851 DT model. We note that the scaling co
lapse in the kinetically rough growth regime~i.e., for t.tc)
is not excellent, but it is remarkable that the exponentd that
is meaningfully defined only in the layer-by-layer grow
regime continues to provide an approximate reasonable
scription of the kinetically rough growth regime.

In Fig. 3 we show our (111)-dimensional DT mode
layer-by-layer growth oscillations@Fig. 3~a!# for the multiple
hit noise-reduction technique (l 51,m.1) for different val-
ues of the noise-reduction factorm. In Fig. 3~b! we show the
scaling collapse of theW2t data in Fig. 3~a! for variousm
values. The scaling is excellent with an exponentm51.5.
Thus,tc;m1.5 in d851 DT model.

In Fig. 4 we depict our noise-reduced layer-by-lay
growth oscillations@Fig. 4~a!# and the corresponding scalin
collapse of the data for various values ofm ~with l 51) in the
(111)-dimensional WV model simulations. Again, the sc
ing exponentm is found to bem51.5 for the best scaling
collapse, indicatingtc;m1.5 in both DT and WV noise-
reduced models ind851. The finding of the apparent sam
exponent valuem51.5 in both DT and WV models in

FIG. 3. ~a! W2t oscillations for (111)-DT (L51000) with l
51 and m51, 5, 8, 10, 15~top to bottom!; ~b! scaling plot of
systems in~a! using m51.5. The units are as explained in th
caption for Fig. 2.
04160
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(111)-dimensional growth is consistent with the fact th
the effective growth exponentb ~obtained by plotting lnW
against lnt in the simulated results! is almost identical in the
two models: From the slope of the log-log plot in Fig. 2~b!
we obtainb'0.338 for thed851 DT model whereas from
the slope of the log-log plot in Fig. 3~b! we obtain b
'0.339 for thed851 WV model. Thus within the effective
time and length scales of our simulations the two mod
~DT and WV! have essentially the same effective dynami
universality class, which is consistent with the fact that th
have the same effective exponentm51.5 in d851. The fact
that the asymptotic universality classes of the DT and W
models are different even ind851 dimension@31,38,41#
does not seem to affect the effective values ofm we obtain in
our simulations.

Before presenting our (211)-dimensional simulation re
sults in Figs. 5–7 we first discuss the exponent valuesd and
m, all of which have turned out to be approximately 1.5
the (111)-dimensional DT and WV layer-by-layer epitaxia
simulations.~We do not show herel .1, m51 simulation
results for thed851 WV model because they are very sim
lar to those shown in Figs. 2–4 with the same exponenm
'1.5.! First we note that the exponent value is very close
~but somewhat above! the theoretically ‘‘expected’’ exponen
m54/351.33 predicted in Refs.@33,34# assuming that the
continuum growth equation for these discrete growth mod
is that given in Eq.~5!. We also note that the expected rel

FIG. 4. ~a! W2t oscillations for (111)-WV (L51000) with
l 51 andm51, 5, 8, 10, 15~top to bottom!; ~b! scaling plot of
systems in~a! using m51.5. The units are as explained in th
caption for Fig. 2.
1-6
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tionship betweenm andd, namelyd5md8 that becomesd
5m in d851, is obeyed by our simulation results. We al
add that the measured exponentm.1.5 is consistent with
other findings in the literature@25,26,30#. The cause for our
calculatedm (.1.5) to be somewhat~by roughly 10%)
higher than the theoretical value (m54/3) is not very clear at
this stage. We do not, however, believe this discrepancy t
particularly significant because of a number of reasons~i!
our scaling collapse are in fact not inconsistent with an
ponent of 1.33 although an exponent value of 1.5 is d
nitely a statistically better fit for our scaling collapse;~ii ! it is
quite conceivable that there are some systematic finite
and finite time corrections to scaling~which are known to be
very important in DT and WV models!; ~iii ! finally, at least
in the WV model that is definitely known@31,38,41# to as-
ymptotically belong to the EW universality class, it is po
sible that our simulated exponentm.1.5 is showing some
effects of the asymptotic universality class since the theor
cally expected@33,34# m for the linear EW equation@our Eq.
~7!# is m52 in d851 dimensions.

Our d852 dimensional noise-reduced (m.1,l 51) re-
sults for the DT, the WV, and the F model are shown in Fi
5–7, respectively. These (211)-dimensional layer-by-laye
growth results~as well as the results shown in Fig. 2! in
limited mobility models are completely new and do not ex
anywhere in the literature. We carried out our (211) layer-
by-layer growth simulations using only the noise-reduct
technique since our (111)-dimensional results~compare

FIG. 5. ~a! W2t oscillations for (211)-DT (L51033103)
with l 51 andm51, 5, 8, 10, 15~top to bottom!; ~b! scaling plot of
systems in~a! using m52.5. The units are as explained in th
caption for Fig. 2.
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Figs. 2 and 3! indicate that the finite diffusion length and th
multiple hit noise-reduction techniques are essentia
equivalent and the (211)-dimensional simulations with
l .1 are particularly cumbersome to carry out. Ourd852
layer-by-layer epitaxy simulations seem to have produce
few surprising results as discussed below.

In Fig. 5 we present ourd852 layer-by-layer growth
simulations in the DT model using the noise-reduction te
nique. The results are depicted in the same manner as in
d851 case shown in Fig. 3—in particular, Fig. 5~a! shows
the actual layer-by-layer growth oscillations for various v
ues ofm whereas Fig. 5~b! shows the scaling collapse. It i
obvious from comparing Figs. 3 and 5 that the layer-by-la
growth regime is substantially stronger ind852 case com-
pared with thed851 case, which is consistent with a muc
larger value of the damping exponentm.2.5 ~compared
with 1.5 in d851) in Fig. 5~b! in the d852 system. Our
calculated damping exponentm.2.5 for thed852 dimen-
sional DT model is substabtially~by 25%) higher than the
corresponding theoretical prediction@33,34# of m52 for the
LDV equation@Eq. ~5!#, which is generally thought to be th
continuum description for MBE growth. This large discre
ancy between our simulated damping exponent (m.2.5) and
the theoretical damping exponent (m52) corresponding to
Eq. ~5! in d852 dimensions may be a real effect, arisin
from the recently discovered fact@42# that the DT model in
(211) dimensions has actually a very small~but nonzero!
EW ¹2h term in its continuum description in contrast to th

FIG. 6. ~a! W2t oscillations for (211)-WV (L51003100)
with l 51 andm51, 5, 8, 10, 15~top to bottom!; ~b! scaling plot of
systems in~a! using m51.5. The units are as explained in th
caption for Fig. 2.
1-7
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(111)-dimensional DT model, where the EW¹2h term
strictly vanishes@i.e., n250 in Eq. ~7!# by virtue of a topo-
logical symmetry@6# in the DT model. Thus the DT model in
(211) dimensions may actually asymptotically belong~but
with a very small value ofn2) to the EW universality class
which according to Eq.~6! has an infinite value of the damp
ing exponentm. It is, therefore, possible that the valuem
.2.5 in Fig. 5~b! may be indicative of a small correction i
the (211)-dimensional DT model arising from the EW ter
in the continuum equation. More work is needed to conc
sively settle this issue. This would also explain why the sc
ing collapse for the damped oscillations in Fig. 5~b!, particu-
larly for the data in the kinetically rough (t.tc) growth
regime, is not as good as the correspond
(111)-dimensional results shown in Fig. 3—the asympto
corrections to the LDV equation@Eq. ~5!# arising from a
small ¹2h term ~which is present ind852 DT simulation
results of Fig. 5.

The noise-reducedd852 WV model simulations, shown
in Fig. 6, are even more surprising. The layer-by-lay
growth oscillations in the initial transient time~up to t;10
or so! are apparent in Fig. 6~a! for finite values ofm although
the oscillations are already weaker than the correspon
DT results shown in Fig. 5. This is not expected based on
d851 results, where Fig. 3~DT! and Fig. 4~WV! are essen-
tially identical within our simulation sizes and times. Eve
more surprising is the scaling collapse in thed852 WV

FIG. 7. ~a! W2t oscillations for (211) Family (L5100
3100) with l 51 andm51, 5, 8, 10~top to bottom!, ~b! scaling
plot of systems in~a! usingm50.0. The units are as explained
the caption for Fig. 2.
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model shown in Fig. 6~b! which is clearly not a good scaling
behavior—in fact, beyond the layer-by-layer regime~i.e., for
t.tc) there is essentially no scaling behavior in thed8
52 WV results. The scaling behavior of the WV model~Fig.
6! in the (211)-dimensional WV model is clearly very dif
ferent from~and worse than! the corresponding DT results
The best damping exponent value form we obtain from Fig.
6~b! is m'1.5, which is the same as the corresponding W
value in d851 as depicted in Fig. 4. We should emphas
that this estimate (m'1.5) for the damping exponent in th
(211) dimensional WV model should be taken at best a
crude estimate for an effective exponent since there is
scaling behavior in the WV data shown in Fig. 6. Given t
very similard851 behavior in the DT and WV models~as
shown in Figs. 3 and 4! it is very surprising that thed852
behavior in the two models~including the effective damping
exponent valuesm.2.5 and 1.5, respectively, for the DT an
the WV model! is so completely different.

What is the explanation for this striking difference in th
d852 layer-by-layer epitaxial growth behavior in the D
~Fig. 5! and the WV~Fig. 6! model ~particularly in view of
their essentially identical behavior ind851 as seen in Figs
3 and 4!? The explanation actually lies in the recently d
covered fact@42,43# that, while thed851 dimensional WV
model obeys@38,41,42# the continuum growth equation
given in Eqs.~5! and ~7! with n4 and l22Þ0 andn2 very
small but having a nonvanishing positive value, thed852
dimensional WV growth model isactually unstablein the
sense that the WV morphology in the (211)-dimensional
growth forms a regular mounded structure with the mou
edges having approximately constant slopes. Such an ep
ial mounding instability@43# in the (211)-dimensional WV
model becomes particularly manifest under the noi
reduction technique as discussed in details in Ref.@43#. This
unstable mounded morphological growth@43# in the noise-
reducedd852 WV model leads to the peculiar behavior se
for late times in Fig. 6, where the epitaxial mounding ins
bility prevents the usual layer-by-layer growth regime fro
behaving in the ‘‘usual’’ manner depicted in Figs. 2–5.

The effective low value of the WV damping exponentm
<1.5 ~rather than the ‘‘expected’’ larger valuem;2.5 based
on thed851 dimensional WV result! is interestingly consis-
tent with the earlier finding@44# in the literature on the de
pendence of the onset timetES of the Ehrlich-Schwoebe
~ES! instability ~which produces a mounding instability sim
lar to that seen@42,43# in the noise-reducedd852 WV
simulations! on the diffusion length. In particular, it has bee
found @44# that tES; l ES

22 , where l ES is the characteristic
length controlling the strength of the ES instability. If w
now interpret our exponent relationship defined by Eq.~2! to
be valid for the ES instability@and only the magnitudes o
the exponents enter Eq.~2!#, then we conclude that ford8
52, m5udu/d851 fpr udu52, wherel ES now replaces the
diffusion length as the characteristic length. Ourd852 WV
layer-by-layer growth simulations shown in Fig. 5 are ac
ally consistent with a value of the exponentm51. Further
work is needed to conclusively establish this speculat
1-8
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connection between ourd852 noise-reduced WV simula
tions and the ES instability.

Finally, in Fig. 7 we show our (211)-dimensional Fam-
ily model ~FM! simulations under noise-reduced (m.1, l
51) conditions. The FM, which by construction is design
to follow exactly the linear second order Edwards-Wilkins
equation@Eq. ~7!# with n45l2250 in Eq.~5! andn2Þ0, has
very simple growth rules~not shown in Fig. 1!: Each ran-
domly deposited atom seeks to find the site of local hei
minina as the incorporation site. The FM is essentially
discretized version of the EW equation@Eq. ~7!#, and as such
has the EW dynamical exponents:b50 and m5` in d8
52. The growth exponentb @defines the presaturation k
netic roughening ofW asW;tb @1–6## being zero~i.e.. W
; ln t) in the FM, growth is already very smooth because
roughening is only logarithmic in time. In the presence
noise reduction, therefore, the FM@Fig. 7~a!# shows persis-
tent layer-by-layer growth oscillations ind852 with only
logarithmic damping of the oscillation induced by kinet
surface roughening. Since the damping exponentm in the
noise-reducedd852 FM is infinity @Eq. ~6!#, we cannot ob-
tain any scaling collapse of the layer-by-layer growth sim
lation data of Fig. 7~a! which is obvious in the ‘‘scaling plot’’
shown in Fig. 7~b!. A very large value of the exponentm
('100, for example! will of course produce trivial~and
meaningless! data collapse, but we have checked that no
nite reasonably small~up to m510) value of the damping
exponentm produces scaling in Fig. 7~b!. Thus, ourd852
FM results are consistent with the theoretical predict
@33,34# of m being infinity in thed852 EW equation. We
note that we have also carried outd851 dimensional noise-
reduced layer-by-layer growth simulations~not presented in
this paper! in the FM, obtaining excellent scaling collaps
with the theoretically predicted value ofm52. Our results
for the d851 FM layer-by-layer growth are consistent wi
those reported in Ref.@45#.

We mention that very recently a numerical simulation
layer by layer growth in the full Arrhenius diffusion mode
-
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has appeared in the literature@46#. In general, the paramete
R[D/F in this full diffusion model @46#, whereD is the
surface diffusivity andF is the deposition flux, correspond
qualitatively to our parametersl /L or m.

IV. CONCLUSION

We have presented numerical results for extensive c
puter simulations of various noise-reduced limited mobil
DT @10#, WV @11#, and FM @40# growth models in (111)
and (211) dimensions in order to study the damping of t
layer-by-layer growth epitxy invariably induced by the sh
noise inherent in the deposition beam fluctuations. We h
used both multiple hit noise-reduction technique and the lo
surface diffusion length method to obtain the layer-by-lay
growth in our simulations, and have shown that these t
different techniques for obtaining layer-by-layer growth a
essentially equivalent. Our simulation results in general
hibit ~with two exceptions noted below! very good scaling
connecting the layer-by-layer growth regime with the kine
cally rough growth regime. Our calculated damping exp
nents agree well with theoretical predictions where ap
cable. The two exceptions noted above are
(211)-dimensional WV and the FM, where scaling fails f
different reasons. The (211)-dimensional noise-reduce
WV model is known@43# to manifest unstable growth with
spectacular epitaxial mounding, which inhibits layer-by-lay
growth leading to the failure of scaling collapse. The
11)-dimensional FM on the other hand exhibits very stro
and persistent layer-by-layer growth oscillations~with little
kinetic roughening! whose damping is expected on theore
cal grounds to be extremely weak leading to an infinite va
of the damping exponent, which is equivalent to saying t
there is essentially no scaling since in the presence of no
reduction layer-by-layer growth regime lasts forever.
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